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HFe4(CH)(CO)12 

Figure 1. This cyclic scheme summarizes the demonstrated relationships 
among the Fe4C and FesC carbonyl systems. 

form 2 with a hydride bridging between the two basal, FeB, iron 
atoms. There were similarities between the carbonyl 13C 

2-

DNMR spectra of the monoanion with those of HFe4(Tj2-
CH)(CO) 12; carbonyl site exchange barriers increase in the 
series [Fe4C(CO)1 2

2-] < [HFe4C(CO)1 2-] < HFe4(r/2-
CH)(CO)i 2 . Intermolecular exchange of H between 
HFe4(CH)(CO) ] 2 and HFe4C(CO) ]2~ was not observable on 
the NMR time scale. Single crystals of salts of the two cluster 
carbide anions are under crystallographic study. 

Protonation of the exposed, four-coordinate carbide carbon 
atom in [HFe4(/u4-C)(CO)i2

-] is fast and represents the 
first protonation of an exposed carbide carbon atom in a metal 
cluster. The five-coordinate carbon atom in FeS(^s-C)(CO)1S 
is not protonated by strong acids, although the generation of 
HFe4(7i2-CH)(CO)i2 by reaction of [Fe5C(CO)14

2"] with 
HCl must involve at some step transfer of hydrogen to the 
carbide carbon atom. In addition, [Fe4C(CO)1 2

2 -] undergoes 
framework expansion when allowed to react with mononuclear 
transition metal complexes. The previously1 reported 
[RhFe4C(CO)I4

-] was obtained from the reaction of the di-
anion with [Rh(CO)2Cl]2 , and a new octahedral carbide, 
[Mo2Fe4C(CO)1 8

2-] , was formed with Mo(CO)3(THF)3 . 
Cyclic interconversions in the Fe4C and Fe5C systems are 
summarized in Figure 1. 

Oxidation of Fe4C(CO)1 2
2 - with AgBF4 in the presence of 

H2 and of D2, respectively, yielded HFe4(CH)(CO)1 2 and 
DFe4(CD)(CO)12 implicating oxidative addition of hydrogen 
to a coordinately unsaturated Fe4C(CO) ]2 intermediate. This 
is the first facile H2 reduction of a carbide carbon atom in 
metal cluster chemistry and is a formal analogue of a step 
proposed35 in Fischer-Tropsch reactions. 
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Fischer-Tropsch Chemistry: Structure of a Seminal 
TJ2-CH Cluster Derivative, HFe4(i?2-CHXCO)i2 

Sir: 

We have completed a high-precision low-temperature [—100 
(3) 0C] X-ray crystal structure study of a Fe4 "butterfly" 
cluster containing an unusual ?j2-CH ligand. This cluster,1 

HFe4(r/2-CH)(CO)12, 1, occupies a central role in transfor­
mations that document the proposed2 high reactivity of low-
coordinate carbon (carbide) ligands in clusters and that for­
mally may relate to intermediates3 in some metal surface 
catalyzed Fischer-Tropsch reactions.4"6 

After collection of an extensive low temperature data set7 

for crystals of 1 recrystallized from hexane, the structure was 
solved using M U L T A N . 8 There is a butterfly array of four iron 
atoms, each with three terminal carbonyl ligands, with the 
carbidic carbon atom nestled near the center of the top of the 
"wings" of the Fe4 array where it forms a strong C-H-Fe in­
teraction as depicted in Figure 1.9 The most striking feature 
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Figure 1. Atom labeling scheme for [HFe4(7)2-CH)(CO)n] with the 
carbonyl groups omitted for clarity. The labeling scheme is the same as 
that used by Manassero et al.1' Only one of the two independent molecules 
which occupy the asymmetric unit is shown (the two molecules are es­
sentially identical within experimental error). The cluster nearly possesses 
a noncrystallographic mirror plane passing through Fe(I), Fe(4), C(5), 
Ha, and Hb and bisecting the Fe(2)-Fe(3) bond. 

of the structure is that the C-H ligand is an r\2 ligand with a 
three-center interaction (A).1 The hydridic hydrogen atom 

/ H N 
C Fe 

A 
(Hb) bridges Fe(2) and Fe(3), and, despite this bridging ligand, 
the Fe(2)-Fe(3) separation does not differ substantially from 
the other Fe-Fe bonds.10 In this bridging hydride, the Fe(2) 
and Fe(3) to Hb distances of 1.63 (4) and 1.73 (4) A, respec­
tively, agree within 2<r and agree with an expected Fe-Hb 
X-ray distance of ~1.7 A. 

There are two related Fe4C butterfly structures namely the 
62-electron11 [HFe4(^-CO)(CO)12

-], 2,and60-electron12a 

[Fe4(CCOOCH3)(CO)i2_], 3, cluster. The average iron-iron 
bonding distance in 1 is 2.619 (5) A which is similar to the 
average value11 of 2.627 (5) A for the other 62-electron cluster, 
2, and disparate with respect to the expectedly shorter distances 
in the electron-deficient cluster, 3, where the range is 
2.430-2.553 A.12 

Iron-carbon skeletal distances in 1 are of two types. There 
is a set of three which averages to 1.937 (7) A and a unique 
short distance of 1.828 (5) A. The latter is the apical Fe(4)-
C(5) edge distance opposite to the multicenter bond (see A). 
Significantly, the former set of three coincides closely with the 
values of Fe-C multicenter bonds in neutral iron carbide 
clusters (~1.89-1.95 A).2 The pattern of three longer Fe-C 
and one unique, shorter distance is also evident in the isoelec­
tronic cluster, [HFe4(?72-CO)(CO)i2~], 2. For 1, the dihedral 
angle defined by the Fe(l)-Fe(3)-Fe(2) and Fe(3)-Fe(2)-
Fe(4) planes is 110.6°, a value close to that of 117° found11 

in the isoelectronic [HFe4(7?2-CO)(CO)i2~] cluster, 2. The 
dihedral angle in the electron-deficient cluster, 3, is quite dif­
ferent, 130°.12 Clearly, clusters 1 and 2 are not only isoelec­
tronic but closely isostructural in a quantitative context.13 In 
addition, the spatial arrangement of the 12 carbonyl ligands 
in 1 conforms closely to that in the isoelectronic carbonyl de­
rivative, 2, insofar as can be determined from the published 
data for the latter.11 All 12 carbonyl ligands are terminally 
bound, three to each iron atom, and the C-O distances are in 
the normal range of 1.125 (5) to 1.151 (6) A. Overall, the 
spatial arrangement of the carbonyl groups appears to mini­
mize nonbonded interactions; the closest nonbonded separa­

tions among the C and O atoms of the carbonyl groups are 
greater than 2.8 A. 

In the polydentate C-H group, the structural parameters 
incisively identify a closed14 three-center unit (A). The Fe-C 
separation of 1.926 (5) A establishes a C-H-Fe bonding in­
teraction in which the overlap integral for C-Fe is substantial. 
Other crystallographically defined examples of C (alkyl or 
aromatic)-H-metal multicenter interaction in mononuclear 
metal complexes have much larger carbon-metal atom sepa­
rations with a range of 2.36-3.32 A.15 The only other tight 
interaction (B) established was that for a dinuclear tantalum 

C M 
B 

neopentylidene complex where the Ta-C distance was 1.898 
(2) A.15 The complimentary C-H and H-Fe overlaps in the 
multicenter bond (see A) of 1 must be considered significant 
even though the C-H and H-Fe distances of 1.00 (5) and. 1.80 
(4) A, respectively, may be in error by as much as 0.1-0.2 A. 
These C-H and H-Fe distances may be compared with those 
of a mononuclear iron complex with a multicenter C (alkyl 
C-H)-H-Fe interaction accurately determined in a neutron 
crystallographic investigation16 of J773-C8Hi3Fe[P-
(OCHa)3] B

+)BF4-, 4. In 4, the C-H, H-Fe, and C-Fe dis­
tances are 1.164 (3), 1.874 (3), and 2.36 (2) A, respectively. 
Other crystallographically defined C-H- • -M interactions in 
mononuclear complexes are much longer than the value of 
1.874 A for this iron phosphite complex.15 Thus, our studies 
establish for the first time a strong rf- binding of a methylidyne 
ligand; all previously described methylidyne or alkylidyne 
clusters have y.x-r\ '-CR (x = 2,17a 3,,7b-c 417d) stereochemistry 
as in the well-known RCCo3(CO)9 system.17b Our results are 
significant with respect to the formal cluster-surface analogy 
because the binding of CH at the characteristically coordi-
nately unsaturated metal surface should be t)1 in character18-19 

and because the C-H chemisorption state on Ni(111) has been 
interpreted in terms of the C-H vector being tilted with respect 
to the surface normal.20 Also, we anticipate other isoelectronic 
and isostructural members in this ?j2-ligand 62-electron cluster 
series, e.g., [HFe4(j?

2-CN)(CO),2
2-] and [HFe4(?72-NH)-

(CO)I2
+], and are attempting their synthesis. 
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Applications of Bridgehead Alkenes to 
Organic Synthesis. Regio- and Stereochemical 
Control in the Diels-Alder Route to Polyfunctional 
Cyclohexenes and Cyclohexanes 

Sir: 

Suitably functionalized bicyclic molecules occupy an im­
portant role in synthetic organic chemistry. The well-defined 
stereochemical relationship of the carbon framework permits 
simultaneous control over the relative configuration of a 
number of asymmetric centers. The stereochemical informa­
tion contained in these bicyclic molecules can be retrieved in 
a subsequent fragmentation or cleavage reaction. 

We report herein an application of this methodology to 
control stereo- and regiochemistry in the synthesis of poly-
substituted cyclohexenes and cyclohexanes. 

Our approach is outlined in Scheme I. A key step in the 
synthesis is an intramolecular Diels-Alder reaction that results 
in formation of a medium-ring bicyclic lactone containing a 
bridgehead double bond.l We illustrate, for the first time, the 
utility of bridgehead alkanes in organic synthesis by the ad-

Scheme I 
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6a,b: R1 = CO2 Me, R2 = H 

7a; R. =H, R2 = CO3Me 

= R3 = CO2Me, R2 = H 

•' ^ C H 2 J n - O H 

14a,b; Rj = R3 = H 

12a ,b;R = C0-Me, R, =H 15a, b; R, = CO-Me, R- =H 

13a; R1 =H, R2 = CO3Me 16a; R1 = H, R2 = CO2Me 

dition-cleavage sequence shown in steps 2 and 3 in Scheme I. 
The addition step establishes the relative configuration of three 
asymmetric centers; cleavage of the original linkage between 
diene and dienophile results in formation of a di-, tri-, or tet-
rasubstituted cyclohexane with control over all asymmetric 
centers. 

The specific compounds used to illustrate this sequence are 
the triene esters 2-4, chosen because of the ease of cleavage 
of the lactone bridge and the activating influence of the car-
bonyl group in the intramolecular Diels-Alder step.2-3 

Esterification of dienols la4 and lb5 by the methods outlined 
in Scheme II results in 40-60% yields of triene esters 2-4.6 

Intramolecular cycloaddition was accomplished by heating 0.1 
M solutions in xylene. Cycloadditions were complete in 5-6 
h. Typical reaction conditions: 185 0C for 2a, 2b, and 4a, and 
130 0C for 3a and 3b. The bridgehead alkenes (5-7), formed 
in 40-60% yield, are sufficiently stable to allow isolation by 
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